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Performance of IMPUTE v2 under various parameter settings 

To better understand how the results of IMPUTE v2 depend on its parameter 

settings, we selected a 2 Mb region (chromosome 10 positions 79-81 Mb in NCBI Build 

35 coordinates) from our Scenario B dataset. We instructed the method to impute the 359 

SNPs in this region that are typed only on the Illumina chip, using information from the 

expanded reference panel and from 469 Affymetrix SNPs whose genotypes were 

observed in the study sample (the latter SNP set includes a 250 kb buffer on either side of 

the region to protect against edge effects). We repeated the analysis under all possible 

combinations of the following settings: 12, 24, and 100 burn-in iterations; 25, 50, and 200 

main iterations; and 30, 60, 90, 105, 120, 150, and 240 conditioning states (k) per phasing 

update. We also wanted to assess the effects of sample size, so we took nested 

subsamples containing 12.5%, 25%, and 50% of the diploid reference panel and the study 

sample. 

Another question we have considered is whether to choose informed conditioning 

states for all iterations or to devote some of the initial burn-in iterations to the random 

conditioning approach. The intuition is that the informed method might get stuck in a 

local mode of the posterior distribution if the initial random phasing yielded an 

unfavorable configuration. To address this, we allocated different numbers of informed 

conditioning iterations during the burn-in period. Each run either used the informed 

method for all burn-in iterations or just the last 25% or 50% of burn-in iterations. 

The results of this experiment are shown in Figure S1. Each row of plots 

corresponds to a fixed number of burn-in iterations, and each column corresponds to a 

fixed number of main iterations. Subsampled datasets are represented in different colors; 
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to enhance comparability across subsamples, all results in this figure were calculated 

using only the 12.5% of study individuals that were common to all four datasets. Runs 

with different fractions of their burn-in devoted to the informed conditioning method are 

drawn using dotted, dashed, and solid lines (for 25%, 50%, and 100% of burn-in 

iterations based on informed conditioning, respectively). The x-axis of each plot tracks 

the number of conditioning states used for phasing updates in each run, and the y-axis 

shows the discordance between best-guess imputed genotypes and observed Illumina 

genotypes. Although the best-guess imputation metric is an overly simplistic way of 

comparing accuracy, as we emphasized in the Results section, it does tend to provide 

reliable rankings of different approaches and is convenient for these high-dimensional 

results. 

In this dataset, increasing the sample size always improved imputation accuracy, 

as did increasing the number of conditioning states (subject to the stochastic variation of 

a small dataset). However, the latter approach suffered diminishing returns – for datasets 

of all sizes, little accuracy was gained beyond 100 conditioning states. Hence, increasing 

the number of conditioning states k is not an effective way to improve imputation 

accuracy since the running time scales quadratically with k while accuracy quickly 

plateaus. Changing the number of burn-in iterations had no discernable impact on 

accuracy, implying that the algorithm may need very few iterations to reach an effective 

starting point. Increasing the number of main iterations increased accuracy slightly and 

decreased the variance between comparable runs, but the size of this effect was quite 

small. The fraction of burn-in iterations based on informed conditioning updates did not 

show any systematic effect on accuracy. 
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Aside from illustrating the effects of various parameter settings on the 

performance of IMPUTE v2, Figure S1 also shows the effects of using the informed 

conditioning state approximation for phasing updates rather than no approximation at all. 

If running time were not an issue, we would use all K available states (chromosomes) for 

each phasing update, subject to the constraints outlined in the Methods section. (For 

example, K = 120 + 2 x 918 + 2 x 458 = 2,872 for individuals in the study sample and K 

= 120 + 2 x 917 = 1,954 for individuals in the diploid reference panel.) Due to 

computational limitations, however, we typically use only the k states that are “closest” to 

the individual being updated. One appealing feature of this approximation is that, as k 

approaches K, the subset approximation converges to the full conditional model. 

Consequently, we would expect each accuracy curve in Figure S1 to eventually reach an 

asymptote (with increasing k) at the level that would be achieved with full conditional 

modeling. The curves in the figure seem to be close to this asymptote by k=240, 

suggesting that the informed subset approximation achieves nearly the accuracy of full 

conditional modeling while requiring much less computational effort.  

On the whole, these findings show that IMPUTE v2 is not sensitive to most 

differences in input parameters, and that near-maximal accuracy can therefore be 

achieved with computationally favorable settings. Computationally rigorous settings are 

always desirable when resources allow, but these results provide useful guidance about 

which settings could be curtailed to gain speed when necessary. Finally, despite 

inconclusive results (which were not clarified by analysis of datasets encompassing larger 

regions; data not shown) about the best way to apportion burn-in iterations between 

conditioning methods, we still believe that it is good practice to choose random 
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conditioning states for at least the first few burn-in iterations and then switch to informed 

conditioning states for additional burn-in. 

 

Convergence of IMPUTE v2 algorithm 

One encouraging observation from Figure S1 is that, for a given k and sample 

size, IMPUTE v2 attains similar accuracy levels across more than two dozen independent 

runs (three burn-in iteration settings, three proportions of informed burn-in updates, and 

three main iteration settings, for a total of 27 runs per k and sample size), subject only to 

slight variations with the number of iterations. This consistency across runs suggests that 

the algorithm can integrate over parameter space quickly and thoroughly; in this case, the 

unknown phase of the observed genotypes is the nuisance parameter that is being 

integrated out. Hence, it seems that there is little risk that any particular run of the 

algorithm, on any reasonable setting, will get stuck in a local mode of the posterior 

distribution and yield drastically sub-par imputation results. 

Despite these positive results, it is good practice to assess the convergence 

properties of the algorithm more formally. To do so, we performed additional runs on the 

2 Mb region of our Scenario B dataset that was described above. Using the full sample, 

we ran IMPUTE v2 under all possible combinations of the following settings: 10, 25, and 

100 burn-in iterations; 20, 50, and 100 main iterations; and 30 and 100 conditioning 

states (k) per phasing update. We set the first 25% of burn-in iterations to use k random 

conditioning states for phasing updates and all subsequent iterations to use k informed 

states.  
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For each combination of parameter settings, we conducted 10 independent runs of 

the algorithm; each run started with a unique, random phasing of the observed data. We 

separately assessed the convergence of the marginal posterior distribution of each 

imputed genotype using the R̂  metric, which is a common statistic for measuring 

convergence in MCMC applications1. Informally, R̂  compares the variance of a scalar 

estimand ψ between runs to the variance within each run. The intuition is that the within-

run variance will be smaller than the between-run variance until approximate 

convergence is reached. The R̂  metric represents the “potential scale reduction” of the 

distribution for ψ that might be achieved if the algorithm were run for a very large 

number of iterations. Values near 1 denote approximate convergence, whereas values 

above 1 suggest that inference could be improved with larger numbers of iterations. 

IMPUTE v2 produces a probability triple, not a scalar estimand, for each imputed 

genotype at each iteration. To transform this output into a form that could be used with 

the R̂  statistic, we converted each probability triple to an expected genotype count, or 

“dosage”; the expected count for a genotype with probability vector (p0, p1, p2) is 

2

0 gg
g p

=
!" , with possible values falling between 0 and 2. While the R̂  statistic is meant 

to be used with normally distributed estimands, the distribution of expected genotype 

counts cannot formally follow a normal distribution. Nonetheless, our experience 

suggests that the standard interpretation of R̂  is still reasonable in this situation.  

In the 2 Mb region that we analyzed, there were over 300 common SNPs (MAF 

>= 5%) but only 24 rare SNPs. We separately monitored convergence at all rare SNPs 

and at a random subset of 100 common SNPs. At the common SNPs, we assessed the 

expected genotype count of each study sample individual (out of 459) as a separate scalar 
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estimand; at each rare SNP, we assessed only the individuals who carried copies of the 

minor allele (typically in heterozygous genotypes). In total, we measured convergence for 

45,900 common SNP genotypes and 732 rare SNP genotypes. 

The results of this analysis are shown in Table S1. The results for k=30 and k=100 

were similar, so the table includes only the results for k=30. Here, we summarize the 

distribution of R̂  values for each combination of parameter settings by the percentage of 

genotypes for which R̂  exceeded 1.02 after the specified number of iterations; this is the 

percentage of genotypes for which the inference has not fully converged at the R̂  = 1.02 

level. The results for common and rare SNPs are shown on the left and right, 

respectively. 

One observation from Table S1 is that convergence is largely insensitive to the 

number of burn-in iterations, as we concluded above. On the other hand, convergence 

improves when the algorithm is allowed to continue for a larger number of main 

iterations. The first observation suggests that the IMPUTE v2 algorithm moves around 

the space of observed-data haplotype reconstructions very efficiently: even starting from 

a random phasing of the data, it can apparently reach the posterior distribution in 10 

iterations or fewer. Conversely, it may take up to 100 main iterations to fully integrate 

over the phase uncertainty in the data following burn-in; the implication is that 

independent runs with fewer main iterations might arrive at different sets of imputed 

genotypes. 

Note, however, that our convergence threshold of R̂  < 1.02 is very strict by most 

standards. If we instead used a threshold of 1.05, the average percentages in Table 4 

would be 0.55%, 0.05%, and 0% for common SNPs and 0.27%, 0.05%, and 0% for rare 
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SNPs (with 20, 50, and 100 main iterations, respectively). These convergence levels are 

excellent in practical terms, and they imply that IMPUTE v2 will yield reliable and 

accurate results at the parameter settings used in the main study (10 burn-in iterations, 

followed by 20 main iterations). 

 

Limits of informed conditioning approximation 

Apart from our new way of accounting for the structure of imputation datasets, 

another innovation of this work is our proposed approximation to the conditional 

distributions used for phasing updates. One theoretical concern about this “informed” 

state selection method is that its accuracy might be expected to deteriorate as the amount 

of recombination in the dataset increases. This is because, in a given region of the 

genome, the concept of “k closest” genealogical neighbors loses meaning as 

recombination events accumulate and disrupt tree topologies. Intuitively, our 

approximation ought to depend on the total number of individuals in the dataset N, the 

number of conditioning states k, and the population-scaled recombination rate !  for the 

region of interest. All other things being equal, larger N should make the approximation 

better by increasing the rate of coalescence; larger k should make it worse by allowing 

the conditioning states to have more distant common ancestors; and larger !  should 

make it worse by generating more topological changes in the genealogy. 

Despite the theoretical possibility that our state selection approximation could 

break down under certain conditions, this does not appear to be a problem in realistic 

applications. For example, we performed a series of imputation analyses in settings 

similar to the current study (N = 1500, k = 120) and saw no signs of a drop in accuracy 
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for regions spanning up to 20 cM on the genetic map, or ~20 Mb on the physical map 

(data not shown). In practice, we typically restrict imputation runs to regions of 10 Mb or 

less to take advantage of parallel computing capacity. These considerations, along with 

the apparent robustness of the method to different parameter settings, lead us to believe 

that our informed state selection method is a broadly applicable way of improving 

accuracy in imputation and phasing analyses. We also believe that this approximation 

could help protect against – and even benefit from – population structure in a dataset; we 

will pursue this idea elsewhere. 

 

Integrating genotypes from two SNP chips 

To create a diploid reference panel in Scenario B, we combined data from two 

SNP chips (the Affymetrix 500K chip and the Illumina 550K chip) on a common set of 

individuals. We began by discarding the relatively small number of SNPs that were not 

represented in the CEU HapMap panel since these violate the hierarchical arrangement 

depicted in Figure 2. Among the remaining SNPs, most were typed only on one chip, and 

we filtered these according to the specifications of the WTCCC2. We treated SNPs typed 

on both chips as follows: First, we combined the called genotypes. If a genotype was 

uncalled on both chips, we marked it ‘missing’; if a genotype was called on one chip but 

not the other, we kept the available call; if a genotype was called on both chips and they 

agreed, we kept the call; if a genotype was called on both chips and they disagreed, we 

marked the genotype ‘missing’. We then applied the same SNP filters as before to these 

consensus genotypes, except that we used a more stringent missing data filter of 1% (in 

contrast to the 5% filter used by the WTCCC). This eliminated SNPs that had many 
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disparate calls between chips or were difficult to call on both chips. Few of the SNPs that 

survived this filtering regime would have been removed by applying the standard filters 

to either chip separately, and almost none would have been removed from both chips in 

this way (data not shown) – this gives us confidence that the resulting combined dataset 

is of high quality. 

 

Association testing of cases imputed from controls 

One manifestation of Scenario B, which we outlined in the Introduction, entails 

using a large set of controls genotyped on multiple SNP chips to impute case cohorts 

genotyped on only one of those chips. This study design is currently being applied by the 

WTCCC, and it may soon be used in other studies as well. 

One potential concern about this design is that false positive associations could 

arise at SNPs where the control genotypes are observed but the case genotypes are 

imputed. Specifically, SNPs that are hard to impute will have lower “quality” in cases 

(i.e., the imputed genotypes will be known with less certainty), and it is well known that 

false positives can arise in the analogous situation of differential data quality when all 

genotypes have been assayed directly3. One proposed solution in that context is to use 

“fuzzy” genotype calls in association tests rather than marking uncertain genotypes as 

missing4. We believe that taking a similar approach in our example – i.e., using 

association tests that properly account for any uncertainty in the genotype calls, whether 

imputed or assayed – should prevent artificially inflated levels of false positives.  

To test this proposition empirically, we used the control genotypes from the 

current study to impute genotypes in another control cohort (the United Kingdom Blood 
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Service controls, or UKBS) from the WTCCC study2. The filtered 1958 Birth Cohort 

(58C) control dataset includes 1,377 individuals genotyped on both the Affymetrix 500K 

and Illumina 550K SNP chips, while the filtered UKBS dataset includes 1,458 

individuals genotyped on only the Affymetrix 500K chip. The 58C dataset for 

chromosome 10 comprises an integrated panel of 44,875 SNPs (as detailed above), of 

which 22,219 are not represented on the Affymetrix chip. We used IMPUTE v2 to impute 

the Illumina-only SNPs in the UKBS data from a combined reference panel of HapMap 

CEU haplotypes and 58C genotypes. We ran IMPUTE v2 with the same settings used in 

the main study: k=40 and k=80; 10 burn-in iterations; 20 main iterations. 

We evaluated the false positive rate by performing frequentist association tests 

between observed 58C genotypes and imputed UKBS genotypes under an additive 

model. To account for the uncertainty in the imputed genotypes, we used a likelihood-

based procedure that integrates over the distribution of the missing data5 and is 

implemented in our SNPTEST software. We plotted the resulting p-p plots for IMPUTE 

v2 with k=40 in Figure S2; the plots for k=80 were almost identical, so we have not 

shown them.  

Figure S2A shows the p-values for all common (MAF >= 5%) SNPs, and Figure 

S2B shows the p-values for all rare SNPs; allele frequencies were calculated in the 58C 

dataset since the true UKBS genotypes are unknown. Each plot includes a 95% 

“concentration band”2, which does not have a simple statistical interpretation but does 

show the approximate spread that null p-values might exhibit. Both plots show slight 

deviations from the y = x line (red), but the p-values stay mostly within the concentration 

band and are well-behaved in the tail of the distribution. We also note that the limited 
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deviation seen here is consistent with the small differences between the 58C and UKBS 

at SNPs typed in both control sets. 

These results show that imputing cases from controls, then testing for differences 

between the imputed case genotypes and the observed control genotypes, will not 

necessarily inflate the false positive rate if appropriate association tests are carried out. 

We strongly caution, however, that association tests that do not account for the 

uncertainty of imputed genotypes could perform badly in this setting. 
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